62 research outputs found

    Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things

    Get PDF
    Funder: Priority Academic Program Development of Jiangsu Higher Education Institutions; Id: http://dx.doi.org/10.13039/501100012246Funder: 111 Project; Id: http://dx.doi.org/10.13039/501100013314Funder: Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesFunder: European Union; Id: http://dx.doi.org/10.13039/501100000780Abstract: The Internet of Things (IoT) provides everyday objects and environments with “intelligence” and data connectivity to improve quality of life and the efficiency of a wide range of human activities. However, the ongoing exponential growth of the IoT device ecosystem—up to tens of billions of units to date—poses a challenge regarding how to power such devices. This Progress Report discusses how energy harvesting can address this challenge. It then discusses how indoor photovoltaics (IPV) constitutes an attractive energy harvesting solution, given its deployability, reliability, and power density. For IPV to provide an eco‐friendly route to powering IoT devices, it is crucial that its underlying materials and fabrication processes are low‐toxicity and not harmful to the environment over the product life cycle. A range of IPV technologies—both incumbent and emerging—developed to date is discussed, with an emphasis on their environmental sustainability. Finally, IPV based on emerging lead‐free perovskite‐inspired absorbers are examined, highlighting their status and prospects for low‐cost, durable, and efficient energy harvesting that is not harmful to the end user and environment. By examining emerging avenues for eco‐friendly IPV, timely insight is provided into promising directions toward IPV that can sustainably power the IoT revolution

    Research Update: Doping ZnO and TiO2 for solar cells

    Get PDF
    © Author(s). This article is distributed under a Creative Commons Attribution (CC BY) License.ZnO and TiO2 are two of the most commonly used n-type metal oxide semiconductors in new generation solar cells due to their abundance, low-cost, and stability. ZnO and TiO2 can be used as active layers, photoanodes, buffer layers, transparent conducting oxides, hole-blocking layers, and intermediate layers. Doping is essential to tailor the materials properties for each application. The dopants used and their impact in solar cells are reviewed. In addition, the advantages, disadvantages, and commercial potential of the various fabrication methods of these oxides are presented.Rutherford Foundation of New ZealandCambridge Commonwealth TrustGirton College CambridgeERC Advanced Investigator GrantNovox [ERC-2009-adG247276

    Large ferro–pyro–phototronic effect in 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films integrated on silicon for photodetection

    Get PDF
    Coupling together the ferroelectric, pyroelectric, and photovoltaic characteristics within a single material is a novel way to improve the performance of photodetectors. In this work, we take advantage of the triple multifunctionality shown by 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT), as demonstrated in an Al/Si/SiOx/BCZT/ITO thin-film device. The Si/SiOx acts as an n-type layer to form a metal–ferroelectric–insulator–semiconductor heterostructure with the BCZT, and with Al and ITO as electrodes. The photo-response of the device, with excitation from a violet laser (405 nm wavelength), is carefully investigated, and it is shown that the photodetector performance is invariant with the chopper frequency owing to the pyro-phototronic effect, which corresponds to the coupling together of the pyroelectric and photovoltaic responses. However, the photodetector performance was significantly better than that of the devices operating based only on the pyro-phototronic effect by a factor of 4, due to the presence of ferroelectricity in the system. Thus, after a poling voltage of −15 V, for a laser power density of 230 mW/cm2 and at a chopper frequency of 400 Hz, optimized responsivity, detectivity, and sensitivity values of 13.1 mA/W, 1.7 × 1010 Jones, and 26.9, respectively, are achieved. Furthermore, ultrafast rise and fall times of 2.4 and 1.5 ”s, respectively, are obtained, which are 35,000 and 36,000 times faster rise and fall responses, respectively, than previous reports of devices with the ferro–pyro–phototronic effect. This is understood based on the much faster ferroelectric switching in ferroelectric thin films owing to the predominant 180° domains in a single direction out of plane.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contracts UIDB/04650/2020. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 958174 (M-ERA-NET3/0003/2021—NanOx4EStor). The authors would also like to thank engineer JosĂ© Santos for technical support at the Thin Film Laboratory. J. L. M.-D. and R. L. Z. H. are grateful for EPSRC CAM-IES grant EP/P007767/. R. L. Z. H. also acknowledges support from the Royal Academy of Engineering under the Research Fellowships scheme (No.: RF\201718\1701). J. L. M.-D. acknowledges support from the Royal Academy of Engineering Chair in Emerging Technologies scheme (No.: CIET1819_24) and the ERC grant EROS, EU-H2020-ERC-ADG # 882929

    Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance

    Get PDF
    Zn1−xMgxO/Cu2O heterojunctions were successfully fabricated in open-air at low temperatures via atmospheric atomic layer deposition of Zn1−xMgxO on thermally oxidized cuprous oxide. Solar cells employing these heterojunctions demonstrated a power conversion efficiency exceeding 2.2% and an open-circuit voltage of 0.65V. Surface oxidation of Cu2O to CuO prior to and during Zn1−xMgxO deposition was identified as the limiting factor to obtaining a high quality heterojunction interface. Optimization of deposition conditions to minimize Cu2O surface oxidation led to improved device performance, tripling the open-circuit voltage and doubling the short-circuit current density. These values are the highest reported for a ZnO/Cu2O interface formed in air, and highlight atmospheric ALD as a promising technique for inexpensive and scalable fabrication of ZnO/Cu2O heterojunctions.Cuprous oxideSpatial atmospheric ALDZnO/Cu2O heterojunctionInorganic solar cel

    Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO

    Get PDF
    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics.Cambridge Overseas and Commonwealth Trust, the Rutherford Foundation of New Zealand, Girton College CambridgeERC Advanced Investigator Grant, Novox [ERC-2009-adG247276]EPSRC [RGS3717

    Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides

    Full text link
    Owing to the versatility in their chemical and physical properties, transition metal perovskite oxides have emerged as a new category of highly efficient photocatalysts for photoelectrochemical water splitting. Here, to understand the underlying mechanism for the enhanced photoelectrochemical water splitting in mixed perovskites, we explore ideal epitaxial thin films of the BiFeO3-SrTiO3 system. The electronic struture and carrier dynamics are determined from both experiment and density-functional theory calculations. The intrinsic phenomena are measured in this ideal sytem, contrasting to commonly studied polycrstalline solid solutions where extrinsic structural features obscure the intrinsic phenomena. We determined that when SrTiO3 is added to BiFeO3 the conduction band minimum position is raised and an exponential tail of trap states from hybridized Ti 3d and Fe 3d orbitals emerges near the conduction band edge. The presence of these trap states strongly suppresses the fast electron-hole recombination and improves the photocurrent density in the visible-light region, up to 16 times at 0 VRHE compared to the pure end member compositions. Our work provides a new design approach for optimising the photoelectrochemical performance in mixed perovksite oxides.Comment: 7 pages and 5 figure

    Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.

    Get PDF
    The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS.This work was supported by EPSRC of the UK (award number RG3717)This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am5058663
    • 

    corecore